Bounds of Stanley depth

نویسنده

  • Dorin Popescu
چکیده

We answer positively a question of Asia Rauf for the case of intersections of three prime ideals generated by disjoint sets of variables and we present several inequalities on Stanley depth. This is a detailed presentation of our talk at the conference on ”Fundamental structures of algebra” in honor of Prof. Serban Basarab at his 70-th anniversary. Let S = K[x1, . . . , xn] be a polynomial algebra over a field K, I ⊂ J ⊂ S two monomial ideals and M = J/I. The depth of M is a homological invariant and depends on the characteristic of the field K. For example if I is the Stanley-Reisner ideal associated to the triangulation of the projective real plane PR then depthS/I = 3 if and only if the characteristic of K is not 2, otherwise depth S/I = 2 (see [16]). This is because the singular homology H̃1(PR;K) = 0 if and only if the characteristic of K is not 2, otherwise H̃1(PR;K) = K. In 1982 Stanley [18] introduces a new invariant the so-called the Stanley depth, which is combinatorially defined and so does not depend on the characteristic of the field K. Given a monomial u ∈ (J \ I) and Z ⊂ {x1, . . . , xn}, we say that ûK[Z], û = u + J , is a Stanley space of dimension |Z| if it is free over K[Z]. A Stanley decomposition of J/I is a finite direct sum of Stanley spaces, D : J/I = ⊕i=1uiK[Zi], and we call sdepth D = min{|Zi|} the Stanley depth of D . For example the Stanley decomposition D : K[x, y]/(x, xy) = K[y]⊕xK has sdepth D = 0. We define sdepthS J/I = max{sdepth D : D Stanley decomposition of J/I}. There exists an infinite set of Stanley decompositions and apparently it is impossible to find sdepth in general. Herzog-Vladoiu-Zheng [5] reduced the problem to find a partition of a finite ordered set. Stanley conjectured that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

An Inequality between Depth and Stanley Depth

We show that Stanley’s Conjecture holds for square free monomial ideals in five variables, that is the Stanley depth of a square free monomial ideal in five variables is greater or equal with its depth.

متن کامل

Combinatorial Reductions for the Stanley Depth of $I$ and $S/I$

We develop combinatorial tools to study the relationship between the Stanley depth of a monomial ideal I and the Stanley depth of its compliment, S/I. Using these results we are able to prove that if S is a polynomial ring with at most 5 indeterminates and I is a square-free monomial ideal, then the Stanley depth of S/I is strictly larger than the Stanley depth of I. Using a computer search, we...

متن کامل

The Stanley Depth of Some Power Sets of Multisets

In this paper, we study the Stanley depth for the partially ordered set (poset) of nonempty submultisets of a multiset. We find the Stanley depth explicitly for any multiset with at most five distinct elements and provide an upper bound for the general case. On the other hand, the elements of a product of chains corresponds to the submultisets of a multiset. We prove that the Stanley depth of t...

متن کامل

A Survey on Stanley Depth

At the MONICA conference “MONomial Ideals, Computations and Applications” at the CIEM, Castro Urdiales (Cantabria, Spain) in July 2011, I gave three lectures covering different topics of Combinatorial Commutative Algebra: (1) A survey on Stanley decompositions. (2) Generalized Hibi rings and Hibi ideals. (3) Ideals generated by two-minors with applications to Algebraic Statistics. In this artic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011